
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
NOVEMBER 2015

2. REPORT TYPE
JOURNAL ARTICLE (POST PRINT)

3. DATES COVERED (From - To)
JUN 2013 – AUG 2015

4. TITLE AND SUBTITLE

ON THE EXISTENCE OF T-IDENTIFYING CODES IN UNDIRECTED
DE BRUIJN NETWORKS

5a. CONTRACT NUMBER
NA

5b. GRANT NUMBER
NA

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Victoria Horan

5d. PROJECT NUMBER
HORN

5e. TASK NUMBER
IN

5f. WORK UNIT NUMBER
HO

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RITF
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site/RITF
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

 AFRL/RI
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2015-008

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA Case Number: 88ABW-2015-3796
DATE CLEARED: 4 AUG 15
13. SUPPLEMENTARY NOTES
One or more of the authors is a U.S. Government employee working within the scope of their Government job; therefore,
the U.S. Government is joint owner of the work and has the right to copy, distribute, and use the work. All other rights are
reserved by the copyright owner.
14. ABSTRACT

This paper proves the existence of t-identifying codes on the class of undirected de Bruijn graphs with string length n and
alphabet size d, referred to as B(d, n). It is shown that B(d, n) is t-identifiable whenever d ≥ 3 and n ≥ 2t, and t ≥ 1, or d ≥
3, n ≥ 3, and t = 2, or d = 2, n ≥ 3, and t = 1. The remaining cases remain open. Additionally, we show that the
eccentricity of the undirected non-binary de Bruijn graph is n.

15. SUBJECT TERMS
Identifying Code; De Bruijn Network; Graph Theory
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
VICTORIA HORAN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

18

ar
X

iv
:1

50
8.

00
40

3v
1

 [
m

at
h.

C
O

]
 3

 A
ug

 2
01

5 On the Existence of t-Identifying Codes in

Undirected De Bruijn Graphs

Victoria Horan ∗

Air Force Research Laboratory

Information Directorate

August 4, 2015

Abstract

This paper proves the existence of t-identifying codes on the class
of undirected de Bruijn graphs with string length n and alphabet size
d, referred to as B(d, n). It is shown that B(d, n) is t-identifiable
whenever:

• d ≥ 3 and n ≥ 2t, and t ≥ 1.

• d ≥ 3, n ≥ 3, and t = 2.

• d = 2, n ≥ 3, and t = 1.

The remaining cases remain open. Additionally, we show that the
eccentricity of the undirected non-binary de Bruijn graph is n.

1 Introduction and Background

Let x ∈ V (G), and define the ball of radius t to be the set of all vertices y
with d(x, y) ≤ t. The formal definition of a t-identifying code on a graph G
is as follows.

∗
victoria.horan.1@us.af.mil

Approved for public release; distribution unlimited: 88ABW-2015-3796.

1

http://arxiv.org/abs/1508.00403v1

Definition 1.1. A subset S ⊆ V (G) is a t-identifying code in a graph G if
the following conditions are met.

1. For all x ∈ V (G), Bt(x) ∩ S 6= ∅.

2. For all x, y ∈ V (G) with x 6= y, we must have Bt(x) ∩ S 6= Bt(y) ∩ S.

The first condition in the definition requires that S be a dominating set.
The second condition requires that each vertex’s identifying set (the sets
Bt(x) ∩ S and Bt(y) ∩ S) is unique. To settle the question of existence of
t-identifying codes in a graph, we will rely on the following fact. If a t-
identifying code exists in a graph G, then we say that G is t-identifiable. If
the variable t is omitted, then we may assume that t = 1.

Definition 1.2. Two vertices x, y are t-twins if Bt(x) = Bt(y).

Fact 1.3. A graph is t-identifiable if and only if it does not contain any

t-twins.

Next we will define the class of de Bruijn graphs. A good reference for
the de Bruijn graphs and some of their properties is [1]. First, we define
[d] = {0, 1, 2, . . . , d− 1} (note that this definition is non-standard). Then we
define the de Bruijn graph as follows.

Definition 1.4. Define the set S(d, n) to be the set of all strings of length n

over the alphabet [d]. The directed de Bruijn graph ~B(d, n) is the graph with
vertex set V = S(d, n), and edge set E = S(d, n+ 1). An edge x1x2 . . . xn+1

denotes the edge from vertex x1x2 . . . xn to vertex x2x3 . . . xn+1. The undi-
rected de Bruijn graph B(d, n) is ~B(d, n) with undirected edges.

Identifying codes were first introduced and defined in [5]. They have many
interesting applications, such as efficiently placing smoke detectors in a house
to provide maximum location information. They are related to (but different
from) dominating sets, perfect dominating sets, locating dominating sets,
and many more types of vertex subsets. In general, the problem of finding
an identifying code in a graph is an NP-complete problem [4]. Results on
the existence and construction of identifying codes on the directed de Bruijn
graph can be found in [3].

In Section 2 we prove results on existence in B(d, n) for d > 2, while
Section 3 considers the case when d = 2 separately. Finally, we conclude
with some open problems.

2

2 Non-Binary de Bruijn Graphs

We begin with our main result.

Theorem 2.1. B(d, n) is t-identifiable for d ≥ 3 and n ≥ 2t.

To prove this theorem, we will use several lemmas that we prove first.
The first lemma (from [2]) is stated using our own terminology and with our
own discussion/proof.

Lemma 2.2. The strings in Bt(x) for x = x1x2 . . . xn must be in one of the

following three sets.

1. {x};

2. [d]g ⊕ xb−f+1 . . . xn−f ⊕ [d]b−g with b > f, b > g, f + b+ g ≤ t;

3. [d]f−c ⊕ xb+1 . . . xn−f+b ⊕ [d]c with f > b, f > c, b+ f + c ≤ t.

Proof. All strings in Bt(x) can be described by following forward or backward
edges. The strings of type (1) are reached by taking no moves. All other
strings (types (2) and (3)) are reached by taking either moves of type FBF
(forward-backward-forward) or BFB (backward-forward-backward). We will
describe shortest paths within these confines. We define f steps forward from
vertex x1x2 . . . xn as reaching vertices in the set:

[d]f ⊕ x1 . . . xn−f .

We define b steps backward from vertex x1x2 . . . xn as reaching vertices in
the set :

xb+1 . . . xn ⊕ [d]b.

If FBF is the shortest path to reach some vertex y from x, then we must
follow f edges forward, b edges backward, and g edges forward, with the
constraints that b > f , b > g, and f + b+ g ≤ t. Following these sequences,
we arrive at strings of type (2).

If BFB is the shortest path to reach some vertex y from x, then we must
follow b edges backward, f edges forward, and c edges backward, with the
constraints that f > b, f > c, and b+ f + c ≤ t. Following these sequences,
we arrive at strings of type (3).

3

Next, we will look at the possible t-prefixes that can appear in a spe-
cial subset of Bt(y). A t-prefix of a string x1x2 . . . xn is simply the first
t letters: x1x2 . . . xt. Since [d]t ⊕ y1y2 . . . yn−t ⊆ Bt(y), if we consider the
whole set Bt(y) then every possible t-prefix must appear. Instead, we want
to determine an upper-bound on the number of distinct t-prefixes in Bt(y) \
([d]t ⊕ y1y2 . . . yn−t). Eventually, we will show that this number of t-prefixes
is smaller than dt, so we will always be able to choose a t-prefix outside of
this special subset.

Lemma 2.3. For n ≥ 2t, the number of distinct t-prefixes in Bt(y) \ [d]
t ⊕

y1y2 . . . yn−t is at most

1− d⌊t/2⌋ + 2 ·
t−1
∑

j=0

dj .

Proof. Following Lemma 2.2, the t-prefixes in Bt(y) take one of the following
three forms (matching the types in Lemma 2.2).

1. y1y2 . . . yt;

2. [d]g ⊕ yb−f+1 . . . yt+b−f−g;

3. [d]f−c ⊕ yb+1 . . . yt+b+c−f .

In order to more easily count these t-prefixes, we will sort them by the
last letter that appears in the t-prefix, and then sort them from longest [d]i

prefix to smallest. Since the largest [d]i prefix also counts the strings with
smaller [d]j prefix so long as the strings end in the same letter, this will allow
us to count unique prefixes. We begin by rewriting the types of prefixes so
as to more easily do this.

1. y1y2 . . . yt;

2. Recall the initial requirements for b, f, g from Lemma 2.2. We find the
range of y-subsequences by noticing that b ≥ g + 1, f ≤ t − b − g ≤
t− 2g − 1, and also that b− f is maximized whenever f = 0. If f = 0,
then we have either b = t−g, or if g is large enough (i.e. g = (t−1)/2)
we have b = g + 1. Combined, this gives us the following equations.

min(b− f) = (g + 1)− (t− 2g − 1)

= 3g + 2− t, and

max(b− f) = max(g + 1, t− g)

= t− g.

4

Hence for 0 ≤ g ≤ t−1

2
:

[d]g ⊕ y3g+2−t+1 . . . y2g+2

...

[d]g ⊕ yt−g+1 . . . y2t−2g

Now we consider all of the possible last letters that might appear.

Last letters: yi such that 2g + 2 ≤ i ≤ 2t− 2g.

Range: yi is a last letter whenever t+ 1 ≤ i ≤ 2t.

So as to minimize the amount of double-counting, we index each of
these yi’s that appear by the choice of g that forces it to appear last.

Max g for each yi: ⌊
2t−i
2
⌋.

3. Note that in this case, we can cover all cases with c > 0 by a different
case with c = 0, so we may just consider the cases c = 0 to simplify
things. This is simply because if c > 0, we may take f ′ = f − c, c′ = 0
to obtain the same t-prefix with smaller choices of f, b, c. We use the
same process as in (2) to determine the possible last letters and index
them to minimize double-counting.

(a) For 0 ≤ f ≤ t+1

2
:

[d]f ⊕ y1 . . . yt−f

...

[d]f ⊕ yf . . . yt−1

Last letters: y t−1

2

, . . . , yt−1.

Range: yi is a last letter whenever t− f ≤ i ≤ t− 1.

Max f for each yi:
t+1

2
.

(b) For t+1

2
< f < t (recall we eliminated f = t):

[d]f ⊕ y1 . . . yt−f

...

[d]f ⊕ yt−f+1 . . . y2t−2f

5

Last letters: y1, y2, . . . , yt−2.

Range: yi is a last letter whenever t− f ≤ i ≤ 2t− 2f .

Max f for each i: 2t−i
2
.

Note that because we require n ≥ 2t, both cases (2) and (3) cover all
possible t-prefixes. That is, we cannot possibly have any t-prefixes that end
in [d]k for any k > 0. Additionally, note that each case covers a different
range of last letters: (1) i = t; (2) t + 1 ≤ i ≤ 2t; and (3) t− f ≤ i ≤ t− 1.
Hence we may count each case separately.

1. There is only one string in this case.

2. We showed previously that max(g) = ⌊2t−i
2
⌋. Thus we have the follow-

ing formula.
{

d
t−1

2 + 2 ·
∑

t−3

2

j=0
dj, if t is odd;

2 ·
∑

t−2

2

j=0
dj, if t is even.

3. In this case, our subcases (a) and (b) overlap. We break up our ranges
slightly differently this time to determine max(f).

(a) 1 ≤ i < t−1

2
.

In this range for i, we must be in the higher range for f , so we
have max(f) = ⌊2t−i

2
⌋.

(b) t−1

2
≤ i ≤ t− 2.

Considering both ranges for f , we have the following maximum
value for f , depending on i.

max(f) = max

(

t+ 1

2
,

⌊

2t− i

2

⌋)

=

⌊

2t− i

2

⌋

(c) i = t− 1.

For this value of i, we must be in the lower range for f , and hence
we have max(f) = ⌊ t+1

2
⌋ = ⌊2t−i

2
⌋.

Hence all cases (a)-(c) have max(f) = ⌊2t−i
2
⌋. Thus we have the follow-

ing formula.

{

2 ·
∑t−1

j= t+1

2

dj, if t is odd;

−d
t

2 + 2 ·
∑t−1

j= t

2
+1

dj, if t is even.

6

Now when we combine all of our equations we get the following final
count.

1− d⌊
t

2
⌋ + 2 ·

t−1
∑

j=0

dj

Note that this provides only an upper bound on our t-prefixes - if we have
repeated letters than we may have double-counted.

Now we are ready to prove our theorem.

Proof of Theorem 2.1. Consider two arbitrary strings: x = x1x2 . . . xn and
y = y1y2 . . . yn. We will show that these two strings cannot be t-twins by
showing thatBt(x)\Bt(y) 6= ∅. This will be done in two cases: x1x2 . . . xn−t 6=
y1y2 . . . yn−t and xt+1xt+2 . . . xn 6= yt+1yt+2 . . . yn. Note that this covers all
cases, since x 6= y implies there is some i ∈ [1, n] such that xi 6= yi. Addi-
tionally, since n ≥ 2t, we must have that i ∈ [1, n− t] ∪ [t + 1, n]. Hence at
least one of these two cases must be true.

1. x1x2 . . . xn−t 6= y1y2 . . . yn−t.

We will show that there must exist some string in Bt(x) that is not in
Bt(y). In particular, there is a string a ∈ [d]t ⊕ x1 . . . xn−t such that
a 6∈ Bt(y). We do this by counting the number of distinct t-prefixes
in Bt(y) \ [d]

t ⊕ y1y2 . . . yn−t, and showing that this number is smaller
than dt. Note that because of the case that we are in, we need not
consider the strings in [d]t ⊕ y1y2 . . . yn−t. If we can show that the
number of t-prefixes is smaller than dt, then there must be some string
z ∈ Bt(x) \Bt(y).

From Lemma 2.3, we know that the total number of t-prefixes in Bt(y)\
[d]t⊕y1y2 . . . yn−t is equal to 1−d⌊

t

2
⌋+2 ·

∑t−1

j=0
dj, and that one of those

t-prefixes is y1 . . . yt, which we may ignore because of the case that we
are in. Define f(t) = −d⌊

t

2
⌋+2 ·

∑t−1

j=0
dj and g(t) = dt−f(t). If we can

show that g(t) is always positive for d ≥ 3, then we know that there
exists a string a ∈ ([d]t ⊕ x1 . . . xn−t)\([d]

t ⊕ y1 . . . yn−t) ⊆ Bt(x)\Bt(y).
Then we know that x and y are not t-twins.

7

Consider our new function g(t).

g(t) = dt + dt/2 − 2 ·
t−1
∑

j=0

dj

= dt + dt/2 −
2 · (dt − 1)

d− 1

=
dt(d− 1) + dt/2(d− 1)− 2(dt − 1)

d− 1

We will determine the nature of this function by finding the roots.
We find the roots by setting the numerator equal to 0 and making a
substitution x = dt/2.

dt(d− 1) + dt/2(d− 1)− 2(dt − 1) = x2(d− 3) + x(d − 1) + 2

The roots of this equation are x = −1 and x = −4

2d−6
. Reversing our

substitution this equates to dt/2 = −1 and dt/2 = −4

2d−6
. The first root

is impossible, and the second will only be possible when 2d − 6 < 0,
or d < 3. Hence, if d ≥ 3, our function has no real roots and is always
positive.

2. xt+1xt+2 . . . xn 6= yt+1yt+2 . . . yn.

In this case, we want to show that there exists some string:

a ∈
(

xt+1 . . . xn ⊕ [d]t
)

\
(

yt+1 . . . yn ⊕ [d]t
)

⊆ Bt(x) \Bt(y).

Because of the symmetric nature of the strings and edges in the de
Bruijn graph, this case follows the same as the previous case, with
analogous lemmas to Lemmas 2.2 and 2.3 for t-suffixes (instead of t-
prefixes). Thus we will again always have fewer than dt prefixes rep-
resented in Bt(y) \ (yt+1 . . . yn ⊕ [d]t), so we will always be able to find
the desired string a that can identify x from y.

As a separate result, we show that B(d, 3) is 2-identifiable for d ≥ 3.

Theorem 2.4. B(d, 3) is 2-identifiable whenever d ≥ 3.

8

Proof. Let x = x1x2x3 and y = y1y2y3 be distinct vertices in B(d, 3). We
consider three cases.

Case 1 x1 6= y1.

Let a1a2a3 ∈ [d] ⊕ [d] ⊕ x1 such that a1a2 is not one of the following
strings or is not contained in one of the sets of strings.

[d]⊕ y1
y2y3

y3 ⊕ [d]
y1y2

[d]⊕ y2

We have a total of [d]2 options for a1a2, and this list contains at most
3d− 1 of those choices. Hence for d ≥ 3, there is always an option left
for a1a2. Then we have a1a2a3 ∈ B2(x) \B2(y).

Case 2 x3 6= y3.

Let a1a2a3 ∈ x3 ⊕ [d] ⊕ [d] such that a2a3 is not one of the following
strings or is not contained in one of the sets of strings.

y1y2
y3 ⊕ [d]
[d]⊕ y1
y2 ⊕ [d]
y2y3

Note that this set of strings has at most 3d − 1 elements, and hence
we can always find some choice for a2a3 that is allowed. Then we have
a1a2a3 ∈ B2(x) \B2(y).

Case 3 x2 6= y2 and x1x3 = y1y3.

We break this case up further into three subcases.

1. If x1x2 = y2y3, then we must have x = abb and y = aab for some
a 6= b. Then cbb ∈ B2(x) \B2(y) for any choice of c ∈ [d] \ {a, b}.

2. If x1 = x3, then x = aba and y = aca for some b 6= c ∈ [d]. We
must have either b 6= a or c 6= a, and so without loss of generality
we may assume b 6= a. Then kab ∈ B2(x) \ B2(y) for any choice
of k ∈ [d] \ {a, c}.

9

3. Lastly, if we are not in either of the two previous subcases then
we choose a1a2a3 ∈ x1x2 ⊕ [d] with a3 ∈ [d] \ {y1, y2}. Then we
have a1a2a3 ∈ B2(x) \B2(y).

For the remaining cases where n < 2t, a different argument must be
found. While this problem remains open, we believe that the following result
could be useful in solving these cases.

Theorem 2.5. For any y ∈ B(d, n) with d ≥ 3, there exists some vertex x
such that d(y, x) = n.

Proof. We proceed by induction on n and show that if the claim is true in
B(d, n) for n ≥ 2, then the claim is true for B(d, n+ 2).

Base Case: n = 2. Since d ≥ 3, our vertex y = y1y2 can use at most
two symbols from our alphabet. Suppose that z ∈ [d] \ {y1, y2}. Then
d(y, zz) = 2.

As our induction proceeds from string length n to n+2, we require an
additional base case of n = 3. If our vertex y = y1y2y3 only uses two dis-
tinct symbols from [d], then the string x = an where a ∈ [d]\{y1, y2, y3}
satisfies d(y, x) = 3. Otherwise, we must have [d] = {y1, y2, y3}. Then
the vertex x = (y2)

3 satisfies d(y, x) = 3.

Induction Step: Let y = y0 ⊕ y ⊕ yn+1 be arbitrary. By the induction
hypothesis, there exists some x ∈ B(d, n) such that d(x, y) = n. We
will show that d(y, x) = n + 2, where x = x0 ⊕ x ⊕ xn+1 with x0 ∈
[d]\{yn, yn+1} and xn+1 ∈ [d]\{y0, y1}. We will show that x 6∈ Bn+1(y)
using Lemma 2.2 and considering each type of path and resulting string
individually.

1. x = y. Not possible since x 6= y.

2. FBF-type.

First, from Lemma 2.2, we know that since d(x, y) = n there
cannot exist any choice of f, b, g such that f+b+g ≤ n−1, b > 0,
b > f , and b > g such that

x ∈ [d]g ⊕ yb−f+1 . . . yn−f ⊕ [d]b−g.

10

In other words, we must have

yb−f+1 . . . yn−f 6= xg+1 . . . xg+n−b

for all such choices of f, b, g.

Now we will show that there does not exist an FBF-path of length
n+1 or less between x and y. Fix some f, b, g such that f+b+g ≤
n + 1, b > 0, b > f , and b > g. From Lemma 2.2 all vertices
z0z1 . . . zn+1 that can be reached by an FBF-path with parameters
(f, b, g) from y must have

yb−f . . . yn−f+1 = zg . . . zg+n+1−b.

(a) If f = 0, b = k, and g = 0, then we consider 1 ≤ k ≤
n − 1 and n ≤ k ≤ n + 1 separately. First, if 1 ≤ k ≤
n−1, then our induction hypothesis with parameters (0, k, 0)
tells us that x1 . . . xn−k 6= yk+1 . . . yn when we examine FBF-
paths with parameters (0, k, 0) from y. Hence we cannot have
x0 . . . xn−k+1 = yk . . . yn+1, and so no such FBF-path exists
between x and y. Next, if n ≤ k ≤ n + 1, then since x0 6=
yn, yn+1, we will never have x0x1 = ynyn+1 or x0 = yn+1, and
so again no such FBF-path exists in B(d, n+ 2).

(b) If f ≥ 1, then we must have b ≥ 2. In this case, in or-
der for such an FBF-path to exists from y to x we must
have xg . . . xg+n−b+1 = yb−f . . . yn+1−f . However our induc-
tion hypothesis with parameters (f − 1, b− 1, g) tells us that
xg+1 . . . xg+n−b+1 6= yb−f+1 . . . yn−f+1, and so no such FBF-
path exists in B(d, n + 2).

(c) If g ≥ 1, then again we must have b ≥ 2. In this case, in order
for such an FBF-path to exist we must have xg . . . xg+n−b+1 =
yb−f . . . yn+1−f . However our induction hypothesis with pa-
rameters (f, b−1, g−1) tells us that xg . . . xg+n−b 6= yb−f . . . yn−f ,
and so no such FBF-path exists in B(d, n + 2).

Hence we cannot have an FBF-path of length less than n + 2
between y and x in B(d, n+ 2).

3. BFB-type.

First, from Lemma 2.2, we know that since d(x, y) = n there
cannot exist any choice of b, f, c such that b+f+c ≤ n−1, f > 0,

11

f > b, and f > c such that

x ∈ [d]f−c ⊕ yb+1 . . . yn−f+b ⊕ [d]c.

In other words, we must have

yb+1 . . . yn−f+b 6= xf−c+1 . . . xn−c

for all such choices of b, f, c.

Now we will show that there does not exist a BFB-path of length
n+1 or less between x and y. Fix some b, f, c such that b+f+c ≤
n + 1, f > 0, f > b, and f > c. From Lemma 2.2 all vertices
z0z1 . . . zn+1 that can be reached by a BFB path from y with these
parameters must have

yb . . . yn+1−f+b = zf−c . . . zn+1−c.

(a) If b = 0, f = k, and c = 0, then we consider 1 ≤ k ≤ n − 1
and n ≤ k ≤ n + 1 separately. First, if 1 ≤ k ≤ n − 1, then
our induction hypothesis tells us that xk+1 . . . xn 6= y1 . . . yn−k

when we examine BFB-paths with parameters (0, k, 0) from y.
Hence we cannot have xk . . . xn+1 = y0 . . . yn−k+1 in B(d, n+2),
so no such BFB-path exists between x and y.
Next, if n ≤ k ≤ n + 1, then since xn+1 6= y0, y1, we will
never have xnxn+1 = y0y1 or xn+1 = y0, and so again no such
BFB-path exists in B(d, n+ 2).

(b) If b ≥ 1, then we must have f ≥ 2. In this case, in or-
der for such a BFB-path to exist from x to y we must have
xf−c . . . xn+1−c = yb . . . yn+1−f+b. However our induction hy-
pothesis with parameters (b− 1, f − 1, c) tells us that

xf−c . . . xn−c 6= yb . . . yn−f+b,

and so no such BFB-path exists in B(d, n+ 2).

(c) If c ≥ 1, then again we must have f ≥ 2. In this case, in
order to have such a BFB-path between x and y we must
have xf−c . . . xn+1−c = yb . . . yn+1−f+b. However our induc-
tion hypothesis with parameters (b, f − 1, c− 1) tells us that
xf−c+1 . . . xn−c+1 6= yb+1 . . . yn−f+1+b, and so no such BFB-
path exists in B(d, n + 2).

12

000

001

010

100

101

110

011

111

Figure 1: B(2, 3) does not contain any vertices at distance 3 from 011.

Hence we cannot have a BFB-path of length less than n+2 between
y and x in B(d, n + 2).

Therefore there is no path from y to x of length n+1 or smaller, and so
d(y, x) ≥ n+2. As it is well known that the de Bruijn graph B(d, n+2)
has diameter n+ 2 (see [1]), we must have d(y, x) = n + 2.

In other words, Theorem 2.5 tells us the eccentricity of every node in the
graph B(d, n) is n for d ≥ 3, and so the radius of B(d, n) is n. Note that
when d = 2 this does not always hold. For example, the graph B(2, 3) does
not have any vertex at distance 3 from 011. See Figure 1.

3 Binary de Bruijn Graphs

We now consider the binary de Bruijn graphs. We provide one result within
this range, and show that B(2, n) is always 1-identifiable.

Theorem 3.1. For n ≥ 3, the graph B(2, n) is identifiable.

Proof. For n = 3, the following is a minimum 1-identifying code on B(2, 3).

{001, 010, 011, 101}

When n ≥ 4, we have the following proof, with many cases. We will prove
this result by showing that it is not possible to have two vertices x and y

13

that are twins. Suppose (for a contradiction) that x and y are in fact twins
in B(2, n). First, the 1-balls for each vertex are as follows.

B1(x) =

x1x2 . . . xn

0x1 . . . xn−1

1x1 . . . xn−1

x2 . . . xn0
x2 . . . xn1

B1(y) =

y1y2 . . . yn
0y1 . . . yn−1

1y1 . . . yn−1

y2 . . . yn0
y2 . . . yn1

Without loss of generality, we assume that x1 = 0. Then we have two
cases: either x1x2 . . . xn = 0y1 . . . yn−1, or x1x2 . . . xn ∈ {y2 . . . yn0, y2 . . . yn1}.

1. x1x2 . . . xn = 0y1 . . . yn−1.

In this case, we know that 0x2 . . . xn = 0y1 . . . yn−1, and so x2 . . . xn =
y1 . . . yn−1. From this, we know the following equality holds.

{x2 . . . xn0, x2 . . . xn1} = {y1y2 . . . yn, y1y2 . . . yn}

This gives us two cases: either y1y2 . . . yn ∈ {0y1 . . . yn−1, 1y1 . . . yn−1},
or y1y2 . . . yn ∈ {y2 . . . yn0, y2 . . . yn1}.

(a) y1y2 . . . yn ∈ {0y1 . . . yn−1, 1y1 . . . yn−1}

The fact that y2 . . . yn = y1 . . . yn−1 implies the following.

y1 = y2 = · · · = yn−1 = yn

Because we are in Case 1 and x2 . . . xn = y1 . . . yn−1, we also have
the following equalities.

x2 = x3 = · · · = xn = y1

Hence our 1-balls must be as shown below for some a ∈ {0, 1}.

B1(x) =

0a . . . a
00a . . . a
10a . . . a
a . . . a0
a . . . a1

B1(y) =

a . . . aa
0a . . . a
1a . . . a
a . . . aa0
a . . . aa1

Note that since n ≥ 4, we have two strings in B1(y) that have
different second-to-last and third-to-last letters, however in B1(x)
there are no such strings. Hence these sets cannot possibly be
equal, which is a contradiction.

14

(b) y1y2 . . . yn ∈ {y2 . . . yn0, y2 . . . yn1}

This implies that y1y2 . . . yn−1 = y2 . . . yn, and so we have the
following chain of equalities.

y1 = y2 = · · · = yn−1 = yn

Hence y = an and x = 0an−1 for some a ∈ {0, 1}. Since x 6= y, we
must have a = 1 and thus our 1-balls, given below, are clearly not
equal - a contradiction.

B1(x) =

01 . . . 1
001 . . . 1
101 . . . 1
1 . . . 10
1 . . . 11

B1(y) =

11 . . . 1
01 . . . 1
1 . . . 10

2. x1x2 . . . xn ∈ {y2 . . . yn0, y2 . . . yn1} and y2 = 0.

From this, we have the following 1-balls.

B1(x) =

0x2 . . . xn

00x2 . . . xn−1

10x2 . . . xn−1

x2 . . . xn0
x2 . . . xn1

B1(y) =

y10x2 . . . xn−1

0y10x2 . . . xn−2

1y10x2 . . . xn−2

0x2 . . . xn−10
0x2 . . . xn−11

Now we have two cases: either 1y10x2 . . . xn−2 = 10x2 . . . xn−1, or
1y10x2 . . . xn−2 ∈ {x2 . . . xn0, x2 . . . xn1}.

(a) 1y10x2 . . . xn−2 = 10x2 . . . xn−1.

This statement implies that we have the following chain of equal-
ities.

y3 = · · · = yn = x2 = · · · = xn−1

In particular, we now know that x = 0a . . . a and y = 00a . . . a.
Hence our 1-balls are given below.

B1(x) =

0a . . . a
00a . . . a
10a . . . a
a . . . a0
a . . . a1

B1(y) =

00a . . . a
000a . . . a
100a . . . a
0a . . . a0
0a . . . a1

15

Since 000a . . . a ∈ B1(y), the only way to have B1(x) = B1(y)
would require a = 0, and thus x = y, which is a contradiction.

(b) 1y10x2 . . . xn−2 ∈ {x2 . . . xn0, x2 . . . xn1} and x2 = 1.

In this instance, we know that x2 . . . xn = 1y10x2 . . . xn−3, and
hence x5 . . . xn = x2 . . . xn−3. This tells us that x = 01y101y1 . . .
and y = y101y101 In particular, our 1-balls are now shown
below.

B1(x) =

01y101y1 . . .
001y101y1 . . .
101y101y1 . . .
1y101y1 . . . 0
1y101y1 . . . 1

B1(y) =

y101y101 . . .
0y101y101 . . .
1y101y101 . . .
01y101 . . . 0
01y101 . . . 1

Note that B1(y) contains two distinct strings beginning with 01,
while B1(x) contains only one such string. Hence it is not possible
that B1(x) = B1(y), which contradicts our initial assumption.

Due to the fact that the eccentricity in the binary de Bruijn graph B(2, n)
is not always equal to n, we know that there will be cases when a t-identifying
code does not exist.

4 Future Work

We have the following questions to consider.

1. Is there a pattern for when B(2, n) is t-identifiable? A related question
is to determine the eccentricity for the undirected binary de Bruijn
graph.

2. Can we determine when B(d, n) is t-identifiable for d ≥ 3 and n < 2t?
Computer testing has led us to conjecture that for d ≥ 3 and n ≥ 2,
there exists a t-identifying code in B(d, n) for 1 ≤ t ≤ n− 1.

3. What is the minimum possible size for an identifying code in B(d, n)?
Are there any efficient constructions for either optimal or non-optimal
identifying codes in these graphs?

16

References

[1] J. Baker, De Bruijn Graphs and their Applications to Fault Tolerant Net-

works, Oregon State University (2011).

[2] Jean-Claude Bermond, Zhen Liu, and Michel Syska, Mean Eccentrici-

ties of de Bruijn Networks, Technical Report, Université de Nice-Sophia
Antipolis (1993).

[3] D. Boutin and V. Horan, Directed Identifying Codes on the de Bruijn

Graph, submitted.

[4] I. Charon, O. Hudry, and A. Lobstein, Minimizing the Size of an Identi-

fying or Locating-Dominating Code in a Graph is NP-Hard, Theoretical
Computer Science, 290 (2003) no. 3, 2109-2120.

[5] M.G. Karpovsky, K. Chakrabarty, and L.B. Levitin, On a New Class of

Codes for Identifying Vertices Graphs, IEEE Transactions on Information
Theory, 355 (1998) no. 2, 599-611.

17

	1 Introduction and Background
	2 Non-Binary de Bruijn Graphs
	3 Binary de Bruijn Graphs
	4 Future Work

